Maple: Unterschied zwischen den Versionen

Aus Augenbit
Wechseln zu: Navigation, Suche
Zeile 28: Zeile 28:
 
==[[(08) Exponentialgleichungen]]==
 
==[[(08) Exponentialgleichungen]]==
  
 
+
==[[(09_1) Schaubilder mit dem GWP darstellen (Ausdruck auch möglich)]]==
 
+
Nun ist alles vorbereitet, um selbst komplizierte Plots
 +
herzustellen (Listen und Mengen sind bekannt)</p><p class=MsoNormal>Einschränkung: Wir haben keine Funktionen definiert; deshalb
 +
ploten wir einfach Terme.</p><p class=MsoNormal>- Einfache Anwendung des Befehls plot  / plot(5) plot(Term,
 +
x=-2..7)</p><p class=MsoNormal>- Neue Kontextleiste für Grafikgestaltung</p><p class=MsoNormal>- Plot mit x- und y-Bereich</p><p class=MsoNormal>- Punkte statt Linien, Farbe und 1:1, Form der Punkte</p><p class=MsoNormal>- Linien verschiedener Art und verschiedener Dicke</p><p class=MsoNormal>- Überschriften und Achsenbeschriftungen mit den
 +
dazugehörigen Schriftformatierungen</p><p class=MsoNormal>- Mehrere Grafiken in einem Schaubild mit Hilfe der Liste</p><p class=MsoNormal>- Mehrere Grafiken mit dem Befehl seq</p><p class=MsoNormal>- Punkte und Strecken zeichnen<br>
 +
- Parallelen zu den Koordinatenachsen zeichnen</p><p class=MsoNormal>- Drucken von Schaubildern</p>
 
==[[(09_2) Prozeduren zum bestimmen von Extrempunkten]]==
 
==[[(09_2) Prozeduren zum bestimmen von Extrempunkten]]==
 
Laden von Zusatzpaketen mit with() / with(plots) , extrempunkte,
 
Laden von Zusatzpaketen mit with() / with(plots) , extrempunkte,

Version vom 30. Januar 2007, 18:03 Uhr

Startseite zu Maple für blinde und hochgradig sehbehinderte Schülerinnen und Schüler

Einstellungen für Maple

(02_1) Maple als Taschenrechner

(02_2) Maple als erweiterter Taschenrechner

(02_03) Weitere Tasten des wissenschaftlichen Schultaschenrechners

(03) Maple und die wichtigsten EDIT Funktionen und grundsätzliches zu Worksheets

(04) Variablenbelegung

(05_1) Termumformungen 1

(05_2) Termumformungen 2

(06_1) Lösen von Gleichungen

(06_2) Mit Maple von "Hand" rechnen

(07) Folgen, Listen, Mengen

(08) Exponentialgleichungen

(09_1) Schaubilder mit dem GWP darstellen (Ausdruck auch möglich)

Nun ist alles vorbereitet, um selbst komplizierte Plots

herzustellen (Listen und Mengen sind bekannt)</p>

Einschränkung: Wir haben keine Funktionen definiert; deshalb ploten wir einfach Terme.

- Einfache Anwendung des Befehls plot / plot(5) plot(Term, x=-2..7)

- Neue Kontextleiste für Grafikgestaltung

- Plot mit x- und y-Bereich

- Punkte statt Linien, Farbe und 1:1, Form der Punkte

- Linien verschiedener Art und verschiedener Dicke

- Überschriften und Achsenbeschriftungen mit den dazugehörigen Schriftformatierungen

- Mehrere Grafiken in einem Schaubild mit Hilfe der Liste

- Mehrere Grafiken mit dem Befehl seq

- Punkte und Strecken zeichnen
- Parallelen zu den Koordinatenachsen zeichnen

- Drucken von Schaubildern

(09_2) Prozeduren zum bestimmen von Extrempunkten

Laden von Zusatzpaketen mit with() / with(plots) , extrempunkte, prozeduren.m

(10_1) Funktionen 1

Wie gibt man in Maple Funktionen ein ? f:=x-> ...

(10_2) Funktionen 2

Nachträglich Terme zu Funktionen machen / unapply

Aufgaben

Im Ordner gibt es Aufgaben zu den einzelnen Kapiteln. Der Inhalt der Aufgaben ist den Worksheetnamen zu entnehmen. Es empfielt sich dringend diese Aufgaben zu lösen!!! Denn auch hier gilt: Nur Übung macht den Meister - oder Maple ist nur so gut wie

sein Bediener.</p>

3 Ab hier beginnt die Spielwiese für alle die nicht genug von Maple bekommen bzw. süchtig sind

Diese Worksheets befinden sich im gleichnamigen Ordner 'Spielwiese'. Die Beispiele wurden noch nicht auf Brauchbarkeit untersucht!!!

 

ML-17 Funktionen 3

Abschnittsweise definierte Funktionen / piecewise

ML-18 Potenzfunktionen

Eigenschaften von Potenzfunktionen

ML-19 Symmetrie

Darstellung der Symmetrien zur y-Achse und zum Ursprung:

Je ein symmetrisches Punktepaar, das gewählt werden kann, wird gezeichnet.

ML-20 Manipulation von Schaubildern

Am Beispiel der Normalparabel werden Verschiebungen in x- und y-Richtung, Stauchungen gezeigt.

ML-21 Manipulation von Schaubildern

Wie in ML-20, jedoch kann eine beliebige Funktion eingegeben werden.

ML- 22 Ableiten und Integrieren

Ableiten mit Maple

Integrieren mit Maple

Integralfunktion mit Zeichnung

Ableitungsregeln (Produkt-, Quotienten- und Kettenregel)

D, int, Int

ML-23 Flächenprobleme

Flächen zwischen Kurve und x-Achse: Zeichnung und Rechnung

ML-24 Ober- und Untersumme

Für eine monoton steigende Funktion kann eine Fläche

markiert werden. Dann kann die Ober- und Untersumme eingezeichnet werden und

deren Wert berechnet werden.

 

ML-25 Rotationskörper

Darstellung und Berechnung von Rotationskörper (Rotation um die x-Achse) tubeplot / ML Geo

 

</div></body></html>

--D. Stephan 19:00, 28. Jan. 2007 (CET)