Baustelle LaTeX-Manual-Sekundarstufe1
Mengen und deren Verknüpfungen
2D-Matheschrift | Verbale Beschreibung | LaTeX 1) | AsciiMath 2) | LaTeX-Abkürzung 3) |
---|---|---|---|---|
[math]\displaystyle{ \{ 1, 2, 3, 4 \} }[/math] | Mengenklammer auf, 1, 2, 3, 4, Mengenklammer zu | \{ 1, 2, 3, 4 \}
|
{ 1, 2, 3, 4 }
|
|
P = { x | x ist Primzahl } | groß P ist Menge der Elemente klein x, für die gilt: x ist Primzahl | P = \{ x | x ist Primzahl \} | P = { x | x ist Primzahl } | |
[math]\displaystyle{ 3 \in P }[/math] | 3 ist Element der Menge P | 3 \in P
|
3 in P
|
|
[math]\displaystyle{ 4 \notin P }[/math] | 4 ist nicht Element von P | 4 \notin P
|
4 notin P oder 4 !in P
|
\nin
|
[math]\displaystyle{ A \subset B }[/math] | Menge A ist echt in Menge B enthalten | A \subset B
|
A sub B
|
\sbs
|
[math]\displaystyle{ A \subseteq B }[/math] | Menge A ist in Menge B enthalten oder ist gleich der Menge B | A \subseteq B
|
A sube B
|
\sbse
|
[math]\displaystyle{ A \cup B }[/math] | Vereinigung der Mengen A und B | A \cup B
|
A uu B
|
|
[math]\displaystyle{ A \cap B }[/math] | Durchschnitt der Mengen A und B | A \cap B
|
A nn B
|
|
[math]\displaystyle{ A \backslash B }[/math] | Menge A ohne die Menge B | A \backslash B
|
A \\ B
|
\bs
|
[math]\displaystyle{ \{ \} }[/math] bzw. [math]\displaystyle{ \emptyset }[/math] | leere Menge als leere Mengenklammern bzw. als Symbol | \{ \} bzw. \emptyset
|
{ } bzw. O/ oder emptyset
|
\es
|
[math]\displaystyle{ \overline{A} }[/math] | Menge A quer | \overline{A}
|
bar A
|
\ol
|
Spezielle Zahlenmengen
2D-Matheschrift | Verbale Beschreibung | LaTeX 1) 4) | AsciiMath 2) | LaTeX-Abkürzung 3) |
---|---|---|---|---|
[math]\displaystyle{ \N }[/math] | Menge der natürlichen Zahlen | \mathbb N
|
NN
|
\N
|
[math]\displaystyle{ \Z }[/math] | Menge der ganzen Zahlen | \mathbb Z
|
ZZ
|
\Z
|
[math]\displaystyle{ \Z_0^- }[/math] | Menge der negativen ganzen Zahlen einschließlich der Zahl 0 | \mathbb Z_0^-
|
ZZ_0^-
|
\Z_0^-
|
[math]\displaystyle{ \Q }[/math] | Menge der rationalen Zahlen | \mathbb Q
|
QQ
|
\Q
|
[math]\displaystyle{ \R }[/math] | Menge der reellen Zahlen | \mathbb R
|
RR
|
\R
|
[math]\displaystyle{ \mathcal P }[/math] | Potenzmenge P | \mathcal P
|
cc P
|
Verknüpfungen von Zahlen
2D-Matheschrift | Verbale Beschreibung | LaTeX 1) | AsciiMath 2) | LaTeX-Abkürzung 3) |
---|---|---|---|---|
[math]\displaystyle{ 2 +4 = 7 }[/math] | 3 plus 4 ist gleich 7 | 2+4 =7
|
2+4 =7
|
|
[math]\displaystyle{ 9 -3 \not= 5 }[/math] | 9 minus 3 ist ungleich 5 | 9-3 \not= 5 oder 9-3 \ne 5
|
9-3 != 5 oder 9-3 ne 5
|
|
[math]\displaystyle{ x \pm 3 }[/math] | x plus minus drei | x \pm 3
|
x +- 3 oder x pm 3
|
|
[math]\displaystyle{ 2*8 \gt 15 }[/math] | 2 mal 8 ist echt größer als 15 | 2*8 > 15 oder 2*8 \gt 15
|
2*8 > 15 oder 2*8 gt 15
|
|
[math]\displaystyle{ 8 : 4 \lt 5 }[/math] | 8 geteilt durch 4 ist echt kleiner als 5 | 8:4 < 5 oder 8:4 \lt 5
|
8:4 < 5
|
|
[math]\displaystyle{ x \le 10 }[/math] | x ist kleiner oder gleich 10 | x \le 10
|
x <= 10
|
<=
|
[math]\displaystyle{ a \ge b }[/math] | a ist größer oder gleich b | a \ge b
|
a >= b
|
>=
|
>> | viel größer als | \gg
|
||
<< | viel kleiner als | \ll
|
||
[math]\displaystyle{ \pi \approx 3,14 }[/math] | Die Zahl pi ist ungefähr gleich 3,14 | \pi \approx 3,14
|
pi ~~ 3,14
|
\apx
|
[math]\displaystyle{ (a +b)^2 }[/math] | runde Klammer auf, a plus b, runde Klammer zu, hoch 2 | (a +b)^2
|
(a +b)^2
|
|
[math]\displaystyle{ [x -y]^3 }[/math] | eckige Klammer auf, x minus y, eckige Klammer zu, hoch 3 | [x -y]^3
|
[x -y]^3
|
|
[math]\displaystyle{ s \sim t }[/math] | s ist proportional zu t (das Zeichen bedeutet auch "ähnlich" (similar)) | s \sim t
|
s ~ t
|
|
[math]\displaystyle{ a \hat{=} b }[/math] | a entspricht b | a \hat{=} b
|
a hat= b
|
|
[math]\displaystyle{ 7|28 }[/math] | 7 teilt die Zahl 28 | 7|28 | 7|28 |
Verknüpfungen von Aussagen
2D-Matheschrift | Verbale Beschreibung | LaTeX 1) | AsciiMath 2) | LaTeX-Abkürzung 3) |
---|---|---|---|---|
[math]\displaystyle{ x \in \N \wedge x \lt 3 }[/math] | x ist Element von N und x ist echt kleiner 3 | x \in \N \wedge x < 3
|
x in NN ^^ x < 3
|
|
[math]\displaystyle{ A \Rightarrow B }[/math] | Aus A folgt B ("Wer A sagt, muss auch B sagen.") | A \Rightarrow B
|
A => B
|
\Ra
|
[math]\displaystyle{ x \to \infty }[/math] | x geht gegen unendlich | x \to \infty
|
x -> oo (zwei kleine o) |
x \to \8
|
[math]\displaystyle{ x =1 \vee x =2 }[/math] | x = 1 oder x = 2 | x =1 \vee x =2
|
x =1 vv x =2
|
|
[math]\displaystyle{ 3x =12 \Leftrightarrow x =4 }[/math] | 3x = 12 ist äquivalent zu x = 4 | 3x =12 \Leftrightarrow x =4
|
3x =12 <=> x =4
|
\Lra
|
Brüche 5) und Dezimalzahlen
2D-Matheschrift | Verbale Beschreibung | LaTeX 1) | AsciiMath 2) | LaTeX-Abkürzung 3) |
---|---|---|---|---|
[math]\displaystyle{ \frac{2}{3} }[/math] | zwei Drittel bzw. Bruchanfang, 2 durch 3, Bruchende | 2/3 bzw. \frac{2}{3}
|
2/3
|
\f{2}{3}
|
[math]\displaystyle{ 4\frac{3}{5} }[/math] | vier Dreifünftel bzw. 4 Bruchanfang, 3 durch 5, Bruchende | 4 \frac{3}{5}
|
4 3/5
|
4 \f{3}{5}
|
[math]\displaystyle{ \frac{1}{x} }[/math] | 1 durch x bzw. Bruchanfang, 1 durch x, Bruchende | \frac{1}{x}
|
1/x
|
\f{1}{x}
|
[math]\displaystyle{ \frac{1}{x +2} \not= \frac{1}{x} +2 }[/math] | Bruchanfang 1 durch x plus 2 Bruchende ist ungleich Bruchanfang 1 durch x Bruchende plus 2 | \frac{1}{x +2} \not= \frac{1}{x} +2
|
1/(x +2) != 1/x +2
|
\f{1}{x+2}
|
[math]\displaystyle{ \frac{ \frac{a+b}{2}}{\frac{x}{a-b}} =1 }[/math] | Bruchanfang Bruchanfang a plus b durch 2 Bruchende durch Bruchanfang x durch a minus b Bruchende Bruchende ist gleich 1 | \frac{ \frac{a+b}{2} }{ \frac{x}{a-b} } =1
|
( (a+b)/2) / (x/(a-b) ) =1
|
\f
|
0,25 = 1/4 | 0 Komma 25 ist gleich ein Viertel | 0,25 = 1/4
|
0,25 = 1/4
|
|
[math]\displaystyle{ 0,1\overline{6} = 1/6 }[/math] | 0 Komma 1 Periode 6 ist gleich ein Sechstel | 0,1\overline{6} = 1/6
|
0,1bar6 = 1/6
|
\ol{6}
|
[math]\displaystyle{ 75\% = 3/4 }[/math] | 75 Prozent sind gleich 3 Viertel | 75\% = 3/4
|
75% = 3/4
|
|
2,5 ‰ | 2,5 Promille | 2,5 \permil
|
\%_0 6)
|
Potenzen, Wurzeln, Indizes
2D-Matheschrift | Verbale Beschreibung | LaTeX 1) | AsciiMath 2) | LaTeX-Abkürzung 3) |
---|---|---|---|---|
[math]\displaystyle{ a^2 }[/math] | a zum Quadrat | a^2
|
a^2
|
|
[math]\displaystyle{ a^{12} }[/math] | a hoch 12 | a^{12}
|
a^12
|
|
[math]\displaystyle{ 2^{-3} =1/8 }[/math] | 2 hoch minus 3 ist gleich ein Achtel | 2^{-3} =1/8
|
2^-3 =1/8
|
|
[math]\displaystyle{ a^{n+1} \not= a^n +1 }[/math] | a hoch Exponentanfang n + 1 Exponentende ist ungleich a hoch Exponentanfang n Exponentende + 1 | a^{n+1} \not= a^n +1
|
a^(n+1) != a^n +1
|
|
[math]\displaystyle{ \sqrt{25} = 5 }[/math] | Die Quadratwurzel aus 25 ist gleich 5 | \sqrt{25} = 5
|
sqrt(25) = 5
|
\s{25}=5
|
[math]\displaystyle{ \sqrt{x^2 +y^2} \not= x +y }[/math] | Die Wurzel aus x hoch 2 plus y hoch 2 Wurzelende ist ungleich x plus y | \sqrt{x^2 +y^2} \not= x +y
|
sqrt(x^2 +y^2) != x +y
|
\s{x^2 +y^2} \not= x +y
|
[math]\displaystyle{ \sqrt[3]{8} = 2 }[/math] | Die dritte Wurzel aus 8 ist gleich 2 | \sqrt[3]{8} = 2
|
root(3)(8) = 2
|
\s[3]{8}=2
|
[math]\displaystyle{ \sqrt[3]{a^2} =a^{2/3} }[/math] | Die dritte Wurzel aus a hoch 2 Wurzelende ist gleich a hoch zwei Drittel | \sqrt[3]{a^2} =a^{2/3}
|
root(3)(a^2) =a^(2/3)
|
\s[3]{a^2} =a^{2/3}
|
[math]\displaystyle{ a_1 + a_n }[/math] | a Index 1 plus a Index n | a_1 + a_n
|
a_1 + a_n
|
|
[math]\displaystyle{ a_{n -1} }[/math] | a Index n minus 1 Indexende | a_{n -1}
|
a_(n -1)
|
|
[math]\displaystyle{ {}_{95}^{238}\mathrm{U} }[/math] | Index und Exponent vor einem Zeichen (Bsp. Chemie) | _{95}^{238}U
|
text()_95^238 U
|
Weitere Rechenoperationen, Funktionen
2D-Matheschrift | Verbale Beschreibung | LaTeX 1) | AsciiMath 2) | LaTeX-Abkürzung 3) |
---|---|---|---|---|
[math]\displaystyle{ f(x) =2x +1 }[/math] | f von x ist gleich 2x +1 | f(x) =2x +1
|
f(x) =2x +1
|
|
[math]\displaystyle{ f(3) =7 }[/math] | f von 3 ist gleich 7 | f(3) =7
|
f(3) =7
|
|
[math]\displaystyle{ f \; : \; y = 2x +1 }[/math] | Die Zuordnungsvorschrift der Funktion f lautet: y =2x +1 | f: y =2x +1
|
f: y =2x +1
|
|
[math]\displaystyle{ f: x \mapsto 2x +1 }[/math] | Die Zuordnungsvorschrift der Funktion f lautet: x Zuordnungspfeil nach rechts 2x +1 | f: x \mapsto 2x +1
|
-> 2x +1 | \mt
|
[math]\displaystyle{ P(3,5 | 8) }[/math] | Punkt P mit der x-Koordinate 3,5 und der y-Koordinate 8 | 8) | 8) | |
[math]\displaystyle{ |a| }[/math] | Betrag von a | a| | a| | |
[math]\displaystyle{ \log_a x }[/math] | Logarithmus von x zur Basis a | \log_a x
|
log_a x
|
|
[math]\displaystyle{ \ln x }[/math] | natürlicher Logarithmus (Logarithmus von x zur Basis e) | \ln x
|
ln x
|
|
[math]\displaystyle{ \sin \alpha }[/math] | Sinus von klein alpha | \sin \alpha
|
sin alpha
|
sin ~a
|
[math]\displaystyle{ \cos^2 \beta }[/math] | Kosinus Quadrat von klein beta | \cos^2 \beta
|
cos^2 beta
|
cos^2 ~b
|
[math]\displaystyle{ \tan \gamma }[/math] | Tangens von klein gamma | \tan \gamma
|
tan gamma
|
tan ~g
|
[math]\displaystyle{ \cot 45° }[/math] | Kotangens 45 Grad | \cot 45°
|
cot 45°
|
|
[math]\displaystyle{ \sin (\pi /6) }[/math] | Sinus von Klammer auf Pi Sechstel Klammer zu | \sin (\pi /6)
|
sin (pi/6)
|
Geometrie
2D-Matheschrift | Verbale Beschreibung | LaTeX 1) | AsciiMath 2) | LaTeX-Abkürzung 3) |
---|---|---|---|---|
[math]\displaystyle{ \overline{AB} }[/math] | Strecke AB | \overline{AB}
|
bar(AB)
|
\ol{AB}
|
[math]\displaystyle{ \triangle ABC }[/math] | Dreieck ABC | \triangle ABC
|
/_\ ABC
|
\tri ABC
|
[math]\displaystyle{ \angle BAC }[/math] | Winkel BAC | \angle BAC
|
/_ BAC
|
|
[math]\displaystyle{ \alpha, \beta, \gamma, \delta, \epsilon }[/math] | klein alpha, beta, gamma, delta, epsilon | \alpha, \beta, \gamma, \delta, \epsilon
|
alpha, beta, gamma, delta, epsilon
|
~a, ~b, ~g, ~d, ~e
|
[math]\displaystyle{ g \parallel h }[/math] | g parallel zu h | g \parallel h
|
g||h | g \| h |
[math]\displaystyle{ g \nparallel h }[/math] | g nicht parallel zu h | g \nparallel h
|
||
[math]\displaystyle{ g \perp h }[/math] | g senkrecht zu h | g \perp h
|
g bot h
|
|
[math]\displaystyle{ F \cong F' }[/math] | F kongruent zu F Strich | F \cong F'
|
F ~= F'
|
Anmerkungen
Anmerkung 1)
Online-Editor für LaTeX Die korrekte Schreibweise eines LaTeX-Ausdrucks kann man leicht mit einem LaTeX-Online-Editor überprüfen, z.B. auf der Seite latexeditor.lagrida.com. Unmittelbar nach Eingabe des LaTeX-Ausdrucks erscheint dort sofort das Render-Ergebnis in 2D-Matheschrift.
Anmerkung 2)
Online-Editor für AsciiMath Eine vollständige Übersicht über alle AsciiMath-Befehle findet man auf asciimath.org. Dort kann man auch in einem Online-Editor AsciiMath-Ausdrücke direkt eingeben und das Ergebnis der Übersetzung (Rendering) in 2D-Matheschrift anzeigen lassen.
Anmerkung 3)
Da die LaTeX-Befehle teilweise recht lang sind, wurde 1994 an der TU Dresden eine umfangreiche Liste von LaTeX-konformen Abkürzungen erarbeitet. Die Datei mathlib.tex, die diese Liste enthält, kann mit der Zeile \input{mathlib}
direkt in den LaTeX-Übersetzungsprozess eingebunden werden. Das LaTeX-Übersetzungsprogramm akzeptiert dann die Abkürzungen so wie die ursprünglichen LaTeX-Befehle.
Anmerkung 4)
Die Darstellung mit Doppellinien im Buchstabensymbol beruht auf dem LaTeX-Zusatzpaket amssymb. In der Datei vorspann.tex, die mit der Zeile \input{vorspann}
direkt in den Übersetzungsprozess eingebunden werden kann, wird dieses Paket automatisch mit eingebunden. Die Abkürzung \N
für \mathbb N
wird in der Datei mathlib.tex von U. Nitsch definiert.
Anmerkung 5)
Der LaTeX-Befehl \frac{Zähler}{Nenner}
erzeugt bei der Übersetzung in die 2D-Matheschrift einen Bruch, bei dem Zähler, Bruchstrich und Nenner senkrecht untereinander angeordnet sind.
Mathematisch gleichbedeutend ist die Schrägstrich-Schreibweise Zähler/Nenner, wobei Zähler und Nenner jeweils in runde Klammern eingeschlossen werden müssen, falls sie aus einer Summe oder Differenz bestehen. Vom LaTeX-Übersetzer werden diese Ausdrücke allerdings nicht in die flächige Bruchstrich-Schreibweise (2D-Matheschrift) überführt (gerendert).
In AsciiMath führt die Übersetzung (rendering) der Schrägstrich-Schreibweise zur gleichen flächigen Bruchdarstellung, die der LaTeX-Übersetzer aus der frac-Schreibweise erzeugt.
Anmerkung 6)
Der Befehl \permil wird analog zu einem Vorschlag auf einer Dante-FAQ-Seite in der Datei vorspann.tex definiert.